Skip to main content
Manage Data Labels
Updated over 9 months ago

Overview

As your list of data labels grows, they'll need to be groomed as your business goals evolve. This maintenance will prove essential to ensuring your ML App continuously delivers value. Here are a few ways to manage data labels:

This article provides more information about how to perform these actions.


Bulk upload data labels

You can download a template for bulk uploading your data labels before you design an ML App. Data labels that have been created or uploaded previously will be matched.


Edit data labels

Keeping data labels clean is an essential recurring task to ensure your ML Apps serve the intended business objective.

Data labels can be edited within Data Library. First, from your Feature Store list in Data Labels, select the data label you want to edit. Next, click the pencil icon to open a modal to present the editable fields. It's important to note that all fields are editable if an ML App does not yet use a data label in an environment. However, if a data label is in use by an ML App in an environment, then only its description can be edited.


Hide and unhide data labels

You may also find it useful with your team to manage whether or not a data label is visible when designing new ML Apps. To hide and unhide data labels in the design flow, select the data label you wish to manage in Data Library and update its visibility status.


Auto-generate data label descriptions

SAVVI AI can help you quickly generate data label descriptions for your team to reference as they design and use ML Applications.

Did this answer your question?